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ABSTRACT e \ 1. 
L This r epor t  encompasses t h e  study e f f o r t  o f  t h e  f i r s t  quar te r ly  

period. This e f f o r t  includes: 

1. A l l t e r a t u r e  search f o r  a l l  known t r a n s i s t o r i z e d  concepts of 
DC t o  DC conversion. 

2. A c l a s s i f i c a t i o n  of a l l  known concepts i n t o  f i v e  basic  types 
of converters.  

3 .  A se l ec t ion  of t he  bas i c  concept t o  b e  used f o r  f u r t h e r  study. 

.!t. An examination of duty r a t i o  and power s tage  drive considerations.  

5. A preliminary inves t iga t ion  of power source and load consid- 
e ra t ions .  

6 .  A search of vendor l i t e r a t u r e  f o r  appl icable  high-speed t rans-  
i s t o r s  and r e c t i f i e r s .  

7 .  A preliminary inves t iga t ion  of appl icable  magnetic mater ia ls .  

The bas i c  c i r c u i t s  chosen f o r  f e t h e r  study a r e  the  push-pull 
chopper and the  push-pull i nve r t e r - r ec t i f i e r .  The most promising 
mechanization appears t o  be a combination of pulse and frequency 
modulation, where pdse  width i s  automatically s e t  by the  input 
vol tage,  and frequency i s  var ied a s  a funct ion of load. 

A broad se l ec t ion  of power t r m s i s t o r s  is  ava i lab le ,  and the  
se l ec t ion  of high-speed r e c t i f i e r s  seems adequate. 
i s t o r  e f f i c i ency  viewpoint, t h e  upper frequency of operation f o r  
the s tudy i s  l imi t ed  t o  Z0-B KCPS became of duty cycle r e s t i c t i o n s .  

From a t rans-  

Toroidal  and tape-wound bobbin cores a re  ava i lab le  t o  cover the  
freauency range o f  0.5-200 KCPS, but su f f i c i en t  data  has  not y e t  
been compiled t o  evaluate  t h e  magnetic mater ia l s  i n  a quan t i t a t ive  
manner. 

Power source and load  considerat ions were examined b r i e f l y .  The 
v a r i a t i o n  of pulse  width a s  an inverse  func t ion  o f  input  vol tage 
allows the power s tage and outpucU f i l t e r  t o  suppress the  spec i f i ed  
input  va r i a t ions .  The s t a b i l i t y  of the system aga ins t  s t e p  load  
changes i s  y e t  t o  be determined. 

ii 



HSER 3037 

11. PURPOSE 

The purpose of t h i s  progran is  t o  provide concepts, techniques, and 
developed modular c i r c u i t r y  f o r  non-dissipatlve DC t o  DC converters  
i n  the power range of 0 t o  100 watts. 

I% j c r  program goals  a r e  t h e  maximization of e f f ic iency ,  s impl i c i ty ,  
and r e l i a b i l i t y ,  along with minimization of s i z e ,  weight, and 
response times of the converters,  

The c i r c u i t s  a r e  t o  be modular i n  concept, s o  t h a t  a m i n i m  of 
development i s  requi red  t o  t a i l o r  a c i r c u i t  t o  a spec i f ic  appl i -  
cat ion requirement. 
a s  p r a c t i c a l ,  f o r  t h e  use of state-of-the-art  manufacturing 
technique s . 

The concepts should a l s o  allow, inasmuch 

The program i s  a two-phase program, including a study, analysis ,  
and design phase, and a breadboard phase during which t h e  concepts 
a re  t o  be v e r i f i e d  by construction and t e s t  of eight breadboards. 

0 1 



~ ~~ 

RSER 3037 

111. INTRODUCTION a 
During the  first quar te r ly  period the major port ion of t h e  e f for t  
centered on l i t e r a t u r e  searches, mater ia l s  inves t iga t ions ,  and 
general  formulation of concepts. 

Although severa l  b a s i c  items, such a s  s t a b i l i t y  ana lys i s  and 
magnetic component de t a i l ed  comparisons, a r e  yet unfinished, it 
i s  f e l t  t h a t  t h e  program has progressed t o  the point  where 
spec i f i c  c i r c u i t  concepts can soon be  generated and examined. 
This work w i l l  b e  i n i t i a t e d  during the second qua r t e r ly  period. 

2 



N. TECHNICAL DISCUSSION 

During tk first quar te r ly  period, t h e  a reas  o f  e f f o r t  included: 

A .  Li te ra tu re  Search 

B. C la s s i f i ca t ion  of Power Stages 

C. 

D. Comparison of Power Stages 

E. Duty Rat io  Requireroents 

F. Power Stage Drive Considerations 

G. Materials Inves t iga t ion  

C r i t e r i a  f o r  Se lec t ion  o f  C-hcuitry 

a. Available Power Semiconductors 
b. Usable Freqzency R a q e  of Semiconductors 
c. Available Magnetic Materials 

H. Power Source Considerations 

A. Li te ra tu re  Search 

A n  extensive l i t e r a t u r e  search was per formd,  which disclosed 
the c i r c u i t s  discussed below. Several  of these  c i r c u i t s  a r e  not 
appl icable  t o  t h i s  study, being e i t h e r  non-regulated o r  l imi t ed  t o  
the use of SCR's, but a r e  included f o r  t h e  sake of completeness. 
There a re  other composite c i r c u i t s  which cons is t  of s eve ra l  bas i c  
c i r c u i t s  connected i n  cascade, f o r  example. However, the func t ion  
of these  composite c i r c u i t s  can be accomplished by the  b a s i c  c i r c u i t s  
given. 

Bedford Step-up 
( 1 9 2 )  

Figure 1. Bedford Step-up 

3 



3037 
Developed by SeEer5l Eleztr- ic  Conpany f o r  use i n  DC boost  
appl icat ions,  t 'nis c i r c E i t  is commonly r e fe r r ed  t o  a s  t h e  
ITlyb a ck . 

r,, 

If t h e  trmsistor i s  turned o f f ,  DC current  flows d i r e c t l y  
t o  the load .  
o f f ,  t h e  choke s t o l e s  eriergy dilring t h e  Iron1' time and dis- 
cnarges i n t o  t h e  l o a d  dwing  rroff'r t i m e .  
vol tage i s  added t o  the source vol tage s o  t h a t  a boosting ac t ion  
occurs. 

If the t r a n s i s t o r  i s  a l t e r n a t e l y  turned on and 

The choke's discharge 

(18) 
Sel f -s tab i l iz ing  Chopper 

T 
I L - 1 I I w 0 

Figure 2. Se l f - s tab i l iz ing  Chopper 

Suggested by Powell cf HSED, the drive transformer i s  designed 
s o  t h a t  Eir? Tin X t  = IC;. If 9j 'is t u n e d  on, 91 i s  driven on by 
trznsformer act ion.  l hen  the i r a n s f o r m r  sa tu ra t e s ,  211s drive 
ceases and Ql t u n s  c f f .  Ncthfng fu r the r  happens u n t i l  Q3 i s  
turned on, which resets t he  transformer and supp l i e s  drive f o r  
2. 
t i o n a l  t o  t he  input  v o y t a g e ,  and t h e  va r i ab le  drive frequency 
scppl ies  a ccjntroiled dwell t i m e .  

The t r ans f  cmer  thus proauces a pulse  width inverse ly  propor- 

The c i r c u l t  i s  inherent ly  short  c i r c u i t  proof s ince  Ql and &2 are 
supplied witin f ixe= 6rit.e a n d  regenerat ion cannot occur under sho r t  
c i r c u i t  x n d i t i  ons. 

Pulse Width Modulated F o m r  Supply 
(3) 

I N I -  ' I  
(Reprinted w5th I ; emis s ion  f rom ELECTRONICS, Feb. 23,1962 

Copyri&t MsGraw-Hill, Inc. 1962) 

X g w e  3. Pulse-Width Modulated Power Supply 
4 
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This un i t ,  designed by Lockheed I"lissi1es and Space Co., uses  
e s s e n t i a l l y  t h e  same mechanism as the Se l f -S tab i l iz ing  Chopper, 
except t ha t  an output transformer and rect i f iers  convert  i t  t o  an 
tnve r t e r - r ec t i f  i e r  c i r c u l t .  The constant volt  -second t ransf  ormr 
i s  used as a d r ive  transformer, and a "turnoff winding" i s  added. 
This winding serves  t o  shunt  the d r ive  t r a n s i s t o r ' s  base s i g n a l s .  
t o  ground when the t r a n s f o m r  sa tu ra t e s ,  thus preventing the 
drive t r a n s i s t c r s  f r o m  del iver ing current  i n t o  a sho r t  c i rcui t .  
The c i r c u i t  a l so  uses  load  current feedback i n  the  power s tage.  

Two-State Modulation System 
(498 1 

Figure 4. Simplif ied Two-State Madulakor 

(4) (8) 
This concept, described by Bose o f  MIT. and Rosenthal of 
the Universi ty  o f  C a l i f c m i a ,  i s  a s e l f -osc i l l a t ing  system 
i s  q u i t e  i n t e r e s t i n g  because of i t s  s implici ty .  
an iza t ion  uses a r e l a y  with m e  contact  grounded and t h e  o the r  
contac t  connected t o  B+. 
such t h a t  t h e  capac l tor  voi tage i s  an exponent ia l  charge-discharge 
waveform wi th  respec t  t o  ground. 
t h e  base of a t r a n s i s t o r ,  the co l lec tor  load of which i s  t h e  relay 
c o i l  e 

which 
A simple mech- 

The swinger i s  connected t o  an RC network 

This waveform i s  AC coupled t o  

If the  swinger contac ts  the E+ contact,  t h e  capac i to r  charges and 
d r ives  the t r a n s i s t o r  on. %hen t h e  t r a n s i s t o r ' s  co l l ec to r  cur ren t  
exceeds t h e  c o i l ' s  pu l l - in  current ,  the r e l a y  energizes  and moves 
t h e  swinger t o  the  groundad contact. 
turning the t r a n s i s t o r  o f f .  hihen c o l l e c t o r  current  decreases below 
the  r e l a y  coil 's drop-out value,  t he  r e l a y  de-energizes and the 
swinger jumps t o  t he  B+ contact ,  repea t ing  the  cycle. 
waveform taken from the  swinger t o  ground, i s  a modulated square wave. 

The capac i tor  then discharges,  

The output 

?he modulation i s  pulse-width f o r  duty cyc les .near  loo%, and 
approached pulse-frequency with f ixed  ON time f o r  decreasing duty 
cycle. 

(4 1 
Bose 
which e x h i b i t s  60db a t tenuat ion  of i npu t  v a r i a t i o n s  and O , a $  regula- 
t i o n  f o r  a 50% l o a d  change. 

descr ibes  a 15' watt regulator ,  using t h r e e  t r a n s i s t o r s ,  

5 
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Uni j unc t i on Tran si s t o r  Mult iv ibr  a t o r  HSER 3037 

This c i r c u i t ,  by General E lec t r i c  Co., uses a uni junct ion t r a n s i s t o r ,  
a capaci tor ,  three r e s i s t o r s ,  and a diode t o  generate a rectangular  
waveform, the r e l a t i v e  ON and OFF times of which may be var ied by 
choice of resistors. 

Pulse Rat io  Modulator 
(5) 

This modulator, described by Schaefer, i n  i t s  most  bas i c  form uses t h e  
uni junct ion mult ivibrator  c i r c u i t  with two r e s i s t o r s  replaced by a 
d i f f e r e n t i a l  amplifier.  
by s igna ls  applied t o  the d i f f e r e n t i a l  amplifier.  

Blocking Osc i l l a to r  Remlat o r  

The ON and OFF times may be l i n e a r l y  cont ro l led  

(7,101 

"Reprinted by permission o f  the  copy- 
rigfit owner, American Telephone and 
Telegraph Company, and t h e  authors, 
D.C. Bomberger, D. Feldman, D.E. Trucksess 
S.J. a r o l i n  and P.K. Ussery. This a r t i c l e  
o r ig ina l ly  appeared i n  t h e  B e l l  System 
Technical Journal,  vol.  42, July 1963, 

Figure 5. Blocking Osci l la tor  Regulator 

This regulator ,  designed f o r  the Te'istar power system is bas i ca l ly  a 
chopper regulator  with blocking o s c i l l a t o r  dr ive for t he  switching t rans-  
i s t o r .  
drive transformer . 
FM-SS Modulator 

Regulation i s  accomplished by cont ro l l ing  the  reset time of the 

( 9 )  

E IN 

This concept, developed f o r  AC t o  Dc conversion, uses "act ive f i l t e r i n g "  
t o  minimize the s i z e  and weight of t h e  input AC f i l t e r .  
design with p e c u l i a r i t i e s  which preclude the  use of t r a n s i s t o r s .  
i t  i s  a s e r f e s  i nve r t e r  incorporating a series capaci tor  which is  charged 
by one SCR and discharged by another i n  such a fashion t h a t  t h e  output 
transformer sees Sfd i r ec t iona l  current  flow. 

Low Frequency Pulse Generator 

It i s  an SCR 
Basically,  

(11) 

(Reprint  from EEE, 
with permission of 
Publishing Gorp. ) 

June 1963 
Mactier 

Figure 6. Low Frequency Pulse Generator 



This c i r c u i t  i s  appl icable  t o  a sjngle-ended chopper regula tor .  H S ~  3037 
It uses  t v o  t r a n s i s t o r s ,  fou r  res is tors  and a capaci tor ,  and is 
b a s i c a l l y  a w i j G n c t l c n  r e l axa t io  
descirbed by General E lec t r i c  Co. ?67 and Schaefer(S),  i n  an 
unregulated configuration. 

Monostable Regclatcr 

s c i l l a t o r  s i m i l a r  t o  those 

(12)  

- 

(%printed from FLEZTRICAI, 
DESIGN h l ,  June 1964 
with permission of Rogers 

4 b  Publishing Co., Inc.) 

31 
4 b  0 -- 
e\ €04 7 
A -  - e 

Figure 7. Monostable Regulator 

This  c i r c u i t  uses  t w o  t r a n s i s t o r s  connected i n  a monostable 
c i r c u i t .  One i s  a chopper t r a n s i s t o r .  A t h i r d  t r a n s i s t o r  i s  
used as a va r i ab le  irpedznce t o  c o n t r o l  the chopper t r a n s i s t o r ' s  
OFF time by modulating tne charging of the commutating capaci tor .  

Unregulated Low Voltage Converter 

This  c i r c u i t ,  described by Driebach i s  an unregulated booster  
c i r c u i t .  
and the unique f ea tu re  i s  t h a t  t he  output cur ren t  i s  the base 
current  3f t he  switching t r ans i s to r s .  The output vol tage i s  
approximately equal  t o  the inpcit vol tage plus  half  of the  emitter- 
base reverse voltage.  

Unsp i i e t r i ca l  Low Voltage Converter 

(14) 
(a) 

Regeneration i s  provided by a s a t u r a t i n g  transformer, 

(15) 

This c i r c u i t ,  developed by the ir'S Amy Elec t ronics  R gi D 
Laboratory f o r  l o w v o l t a g e  thermionic diode sources, i s  an 
unregulated blocking osc i l l a to r  wherein the  output i s  transformer 
coupled t o  a capac i t ive  f i l t e r .  

(16 
LOW Voltage Converter 

This uni t ,  developed by iYIinneapolis-Honeyvell i s  an unregulated 
push-pull i nve r t e r  w i th  c m r e n t  feedback. The output i s  rec t i f ied  
by SCR's i n  a phase-controlled fashion.  

Chopper Regulator 
(22) 

This c i r c u i t ,  a l so  develclped by Minneapolis-Honeywell, is a 
por t ion  of a low voltage converter.  The r egu la to r  i s  a f a i r l y  
s t ra ightforward s i n  le-ended chopper, with the  unique f ea tu re ,  
descr ibed by Loucks f23) o f  an addi t iona l  inductor  connected 
between the  switching t r a n s i s t o r  and t h e  free-wheeling diode. 
The inductor  serves t o  decrease switching d i s s i p a t i o n  i n  t h e  
t r a n s i s t o r  by absorbing energy a t  t h e  t i m e  of turn-on. 
off ,  the energy i s  re turned  t o  t h e  source via a spil laveri ,winding 

A t  turn- 

and diode. 7 



(2L) 
Capacitive Doubler 

Thi s c i r c u i t  
two capaci tors  i n  p a r a l l e l  arid discharges them i n  se r i e s ,  thus 
e f f ec t ive iy  doubling the input; voltage.  

developed by Aerospace Re search , Inc . charges 

Figure 8. Capacitive Doubler 

If 31 i s  turned on, C2 charges to Ein through Q1 and CR2. 
Q2 i s  turned on, C1 charges t o  Ein through Q2 and CR1. 
output vo l tage  i s  thus equal t o  2 Ein.  

Capacit ive Divider 

If 
The 

(24) 

This  c i r c u i t ,  a l s o  designed by Aercspace Research, Inc. , charges 
two capac i tors  i n  ser:es and dis .zharges  them i n  p a r a l l e l .  

91 Qz. 

Figure 9 6  Capacitive Divider 

If Qii i s  on, Q2 is  of f  and C 1  and C2 charge t o  Ein/2 through 
Q1 and CR2. hihen Ql is turned o f f  and Q2 on, C2 discharges 
d i r e c t l y  i n t o  tine load  I n  pa ra l l e l  with t h e  s t r i n g  cons is t ing  
of C 1 ,  CRI, and Q2. 

8 
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Figure 10. Hybrid Booster-Converter 

This approach, developed by Xngfneered Magnetlcs, i s  a 
composite c i r c u i t  which func t ions  as a booster and provides 
DC i so l a t ion .  

Q1 and Q2, and T1, CR1 and CR2 comprise an unregulated inver te r -  
r e c t i f i e r  which handles t h e  mir, power. 
and C€& comprise an i n v e r t e r - r e c t i f i e r  which handles only t h e  
makeup pmer .  The supply vol tage  f o r  t h e  makeup i s  fu rn i shed  by a, a DC regula tor  operating i n  t he  switched mode. 
regula t ion  a l l o w s  v a r i a t k n  c i  the r;stp-& va l tage  of the  DC regu- 
l a t o r ,  which ir! twr, varEes t h e  peak vol tage of T 2 ' s  secondaries 
and thus,  t h e  average DC c;l"p-x I;f the  system. The output of t h e  
rec t i f ie rs  i s  t h u s  a strsigh: DC Giltput with an amplitude-modulated 
X voltage szperimposed. 

Booster-Comsrter 

&3 and &, and T2, CR3 

Closed loop 

(20) 

Figure 11. Boos ter-Comerter 

9 
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I n  t h i s  c i r c u i t ,  a continuous path f o r  DC current i s  provided 
f rom the source through the output t ransformer and r e c t i f i e r s .  No 
free-wheeling diode is reqaired,  because of the continuous character  
of t he  choke's input .  

The i n v e r t e r  port ion i s  required t o  handle only t h e  make-up power, 
t ha t  is, (Ecat-Ein) x Iout .  
i s  a DC voltage with duty-ratio-modcfated pos i t i ve  pulses  super- 
imposed. 

Sl iding Square-Wave Comer t er 

The oiltput vol tage of t h e  r e c t i f i e r s  

(21) 

ftf 

6. ZERO CLr9MP 

Figure 12. Sliding Square-Wave Converter 

This concept uses  t w o  unregulated square wave i n v e r t e r s  with 
t h e i r  output t r m s f  ormer secondary windings connected i n  series. 
Regulation is  accomplished by delaying the  phase of one inve r t e r  
re la t ive t o  the o the r .  If the i n v e r t e r s  are  exac t ly  i n  phase, 
the  output vol tage i s  a square wave. If t h e  phases a re  180" apar t ,  
the  output is  zeroo I n  between, t h e  waveshape i s  tha t  of a pulse- 
width modulated square wave where h a l f  t h e  dwell angle i s  equal t o  
the phase displacenent between the inver te rs .  

10 
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The upper diagram shows a connection wherein a l l  t h e  power i s  
transformed and r ec t i f i ed .  The lower sketch shows t h e  output 
transformers adding t o  t h e  input voltage,  s o  t ha t ,  i n  t h i s  
connection, the  system i s  operated as  a booster-converter and 
the inve r t e r s  handle only  the  makeup power. 

One-Step Converter 
( 3 L )  

ffl 

(Reprinted from ELECTRONIC PRODUCTS, September 1964 
with permission of Tech Publ%hers, Inc.)  

Figure 13. he-Step  Converter 

Developed by General E l e c t r i c  Ccmpany, t h e  operation of t h i s  
c i r c u i t  i s  somewhat s imi la r  t o  tha t  of a t r iggered  Jensen c i r c u i t .  

Transis tor  Q1 i s  turned on by t h e  square wave o s c i l l a t o r ,  v i a  
T1, and a turn-on pulse i s  coupled t.hrough C1 t o  Q2, thus t r i gge r ing  
Q2. 
r e l a t i v e l y  l o w  feedback voltage f r o m  T2A, while C1 charges and 
therefore  removes the turn-or, pulse. After some t i m e ,  dependent 
upon the amplitude of t h e  applied vol tage,  satul-able reac tor  SRlA 
will sa tu ra t e  and Q3 will switch on, discharging C1 and hence 
dr iving Q2 i n t o  cutoff wtth a negative spike. 
p o l a r i t y  reverses, the other half of the push-pull arrangement 
operates i n  the  same manner. 

A s  Q2 comes on, T2 supports vol tage and Q2 i s  he ld  on by a 

When the o s c i l l a t o r ' s  

Thus SR1, with i t s  f ixed  volt-time product, fixes the ON t i m e  a s  
a function of input voltage. The frequency of  the  o s c i l l a t o r  is  
var ied  a s  a function of output voltage. The r e su l t an t  T 2  waveshape 
i s  quasi-square, and the type o f  modulation i s  a mixture o f  pulse 
width and pulse-f reauency. 

11 



B. Class i f ica t ion  of Power Stages 

The l i t e r a t u r e  search has revealed only f i v e  basic ,  non- 
d i s s ipa t ive ,  swit ching-type regulator-converters. They are: 

a )  Chopper Regulator 
b )  Capacitive Divider 
c )  Bedford Step-up 
d) Capacitive Doubler 
e 1 Inver te r  -rectifier 

The f irst  two a re  "buck" systems, the second t w o  a re  l%oost" 
systems, and t h e  l a s t  may be e i ther .  

Of these  f i v e  bas ic  types, a number of va r i a t ions  e x i s t .  
The most obvious va r i a t ion  is  t h e  push-pull connection. 
general ,  the  other v a r i a t i o n s  d i f f e r  only i n  drive c i r c u i t r y  
and the means of  cont ro l l ing  the  output duty cycle. The only 
known exception t o  t h i s  statement i s  the use of t h e  "posi t ive 
clamp" which changes the inve r t e r - r ec t i f i e r  t o  t he  booster  and 
hence modifies the  c i r c u i t s  function. 

I n  

There a re  a l so  many other  var ia t ions  hhich use a combin- 
a t ion  of bas ic  c i r c u i t s .  An example i s  the use o f  a chopper 
r egu la to r  t o  supply an unregulated i n v e r t e r - r e c t i f i e r  and i n  
t h i s  manner maintain a regulated output voltage.  
these  va r i a t ions  a re  more complex and inhe ren t ly  l e s s  e f f i c i e n t  
than the b a s i c  types and s o  are n o t  considered here.  

I n  general ,  

All of t h e  applicable t rans is tor ized ,  regulated,  power 
s t a t e  c i r c u i t s  discussed i n  the  l5 t e ra tu re  search may be c l a s s i f i e d  
according t o  t h e  f i v e  bas ic  t j p s  a s  fo l lows:  

12 
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TABLE 1 

CLASSIFICATION OF POLER STAGES I N T O  j3ASIC TYPES 

BASIC TYPE 

Capacitive Divider 
Capacitive Doubler 
Redford Step-up 
Inver te r  -re c t if ie  r 

1) 

SINGLE-ENmD 
(4Y8) 

Two-State Modulator 
Te l s t a r  Blocking 
Osc i l la tor  (7,101 
Low Frequency Pulse 

Monostable Regulator (12)  
Chopper Regulator (22)  
Capacitive Divider (24) 
Capacitive Doubler ( 24) 
Bedford Step-up (1,2) 
Unsymmetrical Low 
Voltage Converter (15) 

Generat or  (11) 

PUSH-PULL 

Self-Stabi l iz ing Chopper 

None 
None 
None 

Pulse-width Modulated 
Pmer  Supply (3 )  
Improved Booster-Converter ( 20 
S li ding Square -Vave 
Converter (21) 
One-step Converter (34) 

13 



2. C r i t e r i a  f o r  Select ion of Ci rcu i t ry  
HSER 3037 

1. Degree of commonability o f  c i r c u i t r y  f o r  Ifbuck" or lrboost" 
appl ica t ion .  
however, t he  following de f in i t i ons  w i l l  be used: 

This i s  a ra ther  subjec t ive  i t e m  t o  evaluate ,  

Commonability e x i s t s  only  i f  t he  same c i r c u i t  arrangment 
can be used f o r  e i t h e r  operation. The i n v e r t e r - r e c t i f i e r ,  
f o r  exanple, can b e  made t o buck o r  boost merely by chang- 
ing a transformer r a t i o .  
up have no commonability, even though t h e  components used 
i n  each may be iden t i ca l ,  because they requ i r e  a change of 
arrangement t o  go from one func t ion  t o  t h e  other. 

The chopper and t h e  Bedford Step- 

The weighting f a c t o r  for t h i s  item i s  5 ,  and t h e  r a t i n g  
may vary from zero t o  5, %&ere 5 i s  the  minimum degree of 
c ommonabi 1 i t y  . 
2. Number of magnetic components. The weighting f a c t o r  i s  3, 
and each magnetic component i s  r a t e d  a s  2.5. 

3.  N d e r  of components. Zach component i s  r a t e d  a t  0.5, and 
the weighting f a c t o r  i s  5. 

be Efficiency.  This r a t ing  i s  based upon t h e  maximum e f f i c i e n c i e s  
which have been repor ted  f o r  t h e  var ious approaches. Ef f ic iency  
r a t i n g s  are:  

The weighttng f a c t o r  i s  4. 
5;. Input r i p p l e  current .  This i s  r a t e d  on t h e  r e l a t i v e  
degree of f i l t e r i n g  required t o  smooth t h e  input .  The 
maximum is 5 ,  minimum i s  0.  The weighting f a c t o r  i s  2. 

6. Output r ipple voltage.  C i r c u i t s  wi th  LC f i l t e r s  are  
r a t e d  2.5, and capac i t ive  f i l t e r s  a t  5.  
f a c t o r  i s  5. 

The weighting 

7. Overload/short c i r c u i t  protect ion.  Ratings are:  

a) c i r c u i t s  which do not have a series element capable 
of being "opened" s o  a s  t o  i s o l a t e  t h e  source from the  
load  f a u l t  a r e  r a t e d  a t  5. 
b )  c i r c u i t  s which have elerwnt s capable of being "opened", 
but where cur ren t  must be sensed on a DC b a s i s  ( r e s i s t o r  
sensing) a r e  r a t e d  a t  2.5. 
e) c i r c u i t s  of category b )  where sensing canbe done on an 
AC b a s i s  (current transformer) a r e  r a t e d  a t  0. 

The weighting f a c t o r  is 5. 
Ilr 



8. Ienimurr! s ize  and weight. Each magnetic component i s  
r a t e d  a t  1: and each r e s i s t o r ,  capac i tor ,  o r  semiconductor 
a t  G.5. The weighfirg f ac to r  i s  3. 

9. I s o l a t i o n  of input-output grounds. Transformer-coupled 
c i r c u i t s  a r e  r a t e d  a t  0, and those without i s o l a t i o n  a t  5. 
The weighting f a c t o r  i s  2. 

Two addi t iona l  c r i t e r i a ,  tha t  o f  output vol tage regula t ion  and 
dynamic regula t ion  recovery t i m e ,  i n i t i a l l y  appeared i n  the above 
l is t  but ha7e been de le ted  on the b a s i s  t h a t  these i t e m s  are deter-  
mined by t h e  cont ro l  c i r c u i t r y  r a t h e r  than t h e  b a s i c  power stage.  

The se l ec t ion  c r i t e r i a  and weighting f a c t o r s  t hus  serve t o  
penal ize  t'nose c i r u i t s  *ich have the h ighes t  valued summation of 
r a t i n p  a;id weighting f a c t o r  products. 

D. com~arison Jf Power Stzges 

Figure 14  shows eight Fo:-er s tagzs ,  & i c h  represent  the simplest  
c o r 5 i p r a t i o n  zapable of performing t h e  necessary func t ions .  

I n  comparing these c i r cu i t s ,  t h e  assemptions were made tha t  t he  
power s tages  TLere independent of drive and c o n t r o l  c i r c u i t r y ,  and 
t h a t  a l l  c i r c u i t s  a r e  operated a t  t h e  same r e p e t i t i o n  r a t e .  This  
means t ha t  the ripple components of the  push-pull s tages  w i l l  be a t  
twice t h e  frequency of those  of the s ing le  ended s t ages  and conse- 
quently e a s i e r  t o  f i l t e r .  

A .  Single-ended Chopper 

1. 
2. 
3. 
4. 
5. 
6. 
7 .  
8 .  

9.  

Commonality - one. 
Pagnetic components - one. Rating = 2.5 
Zompor?ents - four .  Eiating = 2 
Eff ic iency - near  92%, bu t  i3C cur ren t  sensing will 
r e d w e  t h i s  t o  about 90%. 
Icput r i p p l e  current  - high. 
Output r i p p l e  vol tage - LC f i l t e r .  
Protect ion - s e r i e s  element hlith DC sensing. Rating = 2.5 
Size and welght - one magnetic and three  other  components. 
Rating = 2.5 
I s o l a t i o n  -mne. Rating = 5 

Zating = 5 

Rating = 2 
Rating = 5 

Rating = 2.5 

B . Pllsh -pul l  Ch o p p r  

1. 
2. 
30 
I 4. 
5. 

6 .  
7. 
8. 

9.  

Comionalit,y - none. 
Magnetic components - one. Rating = 2.5 
Components - five.  
E f f i c i e n c j  - near 92%. Rating = 2 
Input r i p p l e  cur ren t  - twice the frequency of t he  s ing le -  
ended uni t .  Rating = 2.5 
Output r i p p l e  vol tage - LC f i l t e r .  
Pro tec t ion  - series element with AC sensing. Rating = 0 
Size  and weight - one magnetic and f o u r  other components. 
Rating = 3 
I s o l a t i o n  - none. 

Rating = 5 
Rating = 2.5 

Rating = 2.5 

Rating = 5 
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Single -Ended Chopper 

-- 
C I  

- a  

Bedford Step-up 

Capacitive Doubler 

3 
Capacitive Divider 

HSER 3037 

1 

. Push-pull Chopper 

- 7 AJrn Single - Ended 

Inverter - Rectifier 

- +  
Push- Pull Inve r te r Rectifier 

FIGURE 14 

REPRESENTATIVE BASIC POWER STAGES 
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C. Redford SteD-uD 

1. Commonality - none. Rating = 5 
2. Hamet ic  components - one. 
3. Components - four. Rating = 2 
4. Eff ic iency  - 95%. Rating = 1 
5. Input r i p p l e  current - high. Rating = 5 
6. Output r i p p l e  voltage - capac i t ive  f i l t e r .  

Rating = 5 
7. Protect ion - c i r cu i t  cannot be pro tec ted  without add i t iona l  

series element. Rating = 5 
8. Size and weight - one magnetic and th ree  o ther  components. 

Rating = 5 
9. I s o l a t i o n  - none. 

Rating = 2.5; 

Rating = 5 

D. Single-ended Inver te r - rec t i f ie r  

1. 
2. 
3. 

4. 
5. 
6. 
7. 
R. 

9.  

Commonality - yes. 
Magnetic components - two.  
Components - two magnetic and f o u r  o ther  components. 
Rating = 3 
Eff ic iency  - 80 t o  855, but Dc current  sensing will limit 
i t  t o  about 80%. Rating = 4 
Input r i p p l e  current - high. 
Output r i z p l e  voltage - Lc f i l t e r .  
Protect ion - se r i e s  element with DC sensing. Rating = 2.5 
Size and weight - two magnetics and four  other  components. 
Rating = 4 
I s o l a t i o n  - yes. 

Rating = 0 
Rating = 5 

Rating = 5 
Rating = 2.5 

Rating = 0 

E. Push-pull Inve r t e r - r ec t i f i e r  

1. 
2. 
3. 
4. 
5. 
6 .  
7. 
8. 

9. 

Commonality - yes. 
Magnetic corrpcnents - t w ~ .  Rating = 5; 
Components - e ight .  
Ef f ic iency  - 85%. 
Input r i p p l e  current - twice the  frequency of t h a t  of 
slngle-ended un i t .  Rating = 2.5 
Ootput r i p p l e  voltage - LC f i l t e r .  
Protect ion - s e r i e s  element and AC sensing. Rating = 0 
Size and w e i g h t  - two magnetic and six other  components. 
Rating = 5 
I s o l a t i o n  - yes. Rating = 0 

Batlng = 0 

Rating = 4 
Rating = 3 

Rating = 2.5 

F. Push-pull Booster 

1. Commonality - dele t ion  o f  t h e  output p o t e n t i a l  clamp and 
change of t r a n s f o r m r  r a t i o  w i l l  a l low t h i s  u n i t  t o  "buck". 
Rating = 2.5 
Magnetic components - two. Rating = 5 

Efficiency - v a r i e s  according t o  t h e  degree of boost. 
Average about 90%. 
Input r i p p l e  current  - v a r i e s  depending on the  degree of 
boost,  but i s  b e t t e r  than conventional push-pull because of 
continuous DC content. Rating = 1 

2. 
3. Components - seven. Rating = 3.5 
4. 
5. 

Rating = 2 

6. Output r i p p l e  voltage - LC f i l t e r .  Rating = 2.5 
17 



7. 

8. 

9. I so l a t ion  - none. Rating = 5 

Protect ion - circuit  cannot be pro tec ted  without 
addi t ional  series element. Rating = 5 
Size  and weight - t w o  magnetics and f ive  other components. 
Rating = 4.5’ 

G. Capacit ive Doubler 

1. 
2. 
3. 
4. 

5. 
6 .  
7. 
8. 

9. 

Commonality - none. 
Magnetic components - none. 
Components - six. 
Efficiency - near  90% unregulated,  probably w i l l  decrease 
t o  80-85P with regulation. 
Input r i p p l e  cur ren t  - high. 
Output r i p p l e  voltage - capac i t ive  f i l t e r .  
Protect ion - series element with E sensing. 
S ize  and weight - six non-magnetic components, however, 
the capaci tors  are quite l a r g e  and w i l l  b e  r a t e d  a s  i f  they 
were magnetic components. 
I so l a t ion  - none. 

Rating = 5 
Rating = 0 

Rating = 3 

Rating = 3 
Rating = 5 

Rating = 5 
Rating = 2.5 

Rating = 4 
Rating = 5 

H. Capacitive Divider 

1. 
2. 
3. 
4. 

5. 
6.  
7 .  
8. 

9.  

Commonality - none. 
Magnetic components - none. 
Components - six. 
Eff ic iency  - no experimental data  ava i lab le ,  however, it 
would appear t o  be about equal  t o  t h a t  of t he  Capacitive 
Doubler. Rating = 5 
Input r i p p l e  cur ren t  - high. 
Output r i p p l e  voltage - capac i t i ve  f i l t e r .  
Protect ion - series element wi th  DC sensing. 
Size and weight - six non-magnetic components. However, 
excessive capacitance i s  required,  s o  t h e  capac i tors  w i l l  
be r a t e d  a s  maee t i c s .  Rating = 4 
I s o l a t i o n  - none. 

Rating = 5 
Rating = 0 

Rating = 3 

Rating = 5 
Rating = 5 

Rating = 2.5 

Rating = 5 

Figure 1s i s  a comparison chart  which shows t h e  s e l e c t o r  c r i t e r i a ,  
the r a t ings ,  weighting fac tors ,  and sub-totals  f o r  each power 
stage.  
i nd ica t e s  t he  r e l a t i v e  capabi l i ty  of each c i r c u i t  t o  meet the 
o v e r a l l  spec i f i ca t ion  requirements and goals. 
c i r c u i t s  which were se l ec t ed  f o r  f u r t h e r  considerat ion are the  
push-pull chopper, and the single -ended and push-pull Inverter-  
r ec t i f i s r s  

The bottom l i n e  i s  the summation f o r  each c i r c u i t ,  which 

On t h i s  bas i s ,  t h e  

E. Duty Rat io  Requirements 
( 1 3 )  . - .  

Sorenson presents  a very desc r ip t ive  discussion of the 
var ious  m a n s  of modxlation, using switching techniques,  i n  which 
he discusses the cha rac t e r i s t i c s  of Pulse-width, Pulse Rat io ,  and 
t w o  types  of Pulse-frequency modulation. 
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Several  important points can be taken f r o m  h i s  discussion: 

a >  Some c o n t r o l l e r s  inherent ly  have minimum ON o r  OFF times. 

b )  I n  mochlation systems i n  which the frequency va r i e s ,  the 
cutput low-pass f i l t e r  must be designed f o r  t h e  l o w e s t  
f reauency . 

c )  If e i t h e r  t he  ON o r  OFF t i m e  approaches zero,  t he  b a n M d t h  
of the  c o n t r o l l e r  must approach i n f i n i t y .  

Tne f i rs t  point may be  seen i n ,  f o r  example, t h e  monostable 
mul t iv ibra tor ,  h i c h  has  a m i n i m  recovery, o r  OFF, time. The 
second poin t ,  obviously, implies t h a t  t h e  f i l t e r  f o r  a given 
r e g u l a t w  w i l l  be smallest f o r  a pulse-width modulated system, 
sir,ce i t s  f requemy i s  fixed. 
cat ions.  F i r s t ,  the  desigr, of t h e  c o n t r o l l e r  i s  more severe. 
Second, s ince  %he gain-bandwidth product o f  any phys ica l ly- re la izable  
con t ro l l e r  i s  l imi ted ,  t h i s  means tha t  t h e  regula t ion  of t h e  device 
su f fe r s  because of decreasing gain,  and t h e  c o n t r o l l e r  may tend t o  
be  unstable .  

The t h i r d  point  has  seve ra l  i m p l i -  

Assuming no transforrner sca l ing ,  liegulator B must produce 9 
v o l t s  f r o m  a 10-20 vol t  source. Allowing f o r  a 1 v o l t  series drop, 
t h e  duty r a t i o  m u s t  vary f rom 100% down t o  about 45%. Likewise, 
Regulator G must produce 35 v o l t s  from a 22-33 v o l t  source, with 
a duty r a t i o  varying from about 40% t o  5%. If transformer sca l ing  
is used, t h e  turns r a t i o  nay be adjus ted  f o r ,  say, a step-up of 
1.15, whicn s h i f t s  the  duty r a t i o  of Regulator B t o  a range of 
87% t o  39$, t hus  decreasing t h e  s e v e r i t y  of t h e  bandwidth reaui re -  
ment . 

Another means o f  bypassing poin ts  a )  and c )  above i s  the  use 
of two m d u l a 5 l n g  funct ions s imult  ously,  a s  i n  either the 
Pdse Iru'idth Nodulated Power S u p p l ~ j " ~  o r  t h e  Se l f -S tab i l iz ing  
Chopper(i8). 
the ON t ime and v x i e s  t h e  duty r a t i o  a s  a func t ion  of input  
voltage,  v h i l e  a s e p r a t e  b i s t ab le  mul t ibra tor ,  operat ing over 
a r e l a t i v e i y  narrcwrange of frequencies,  fu rn i shes  t h e  necessary 
O F F  t i m e  t o  compensate f o r  l o a d  changes. 
near 100% duty cycle, t h e  transformer i s  operating c lose  t o  i t s  
normal 1800 s a t w a t e d  switching mode, and t h e  mul t ibra tor  i s  oper- 
a t i n g  c iose  t o  i t s  design frequency. 

Here a constant volt-second transformer e s t ab l i shes  

I n  the l i m i t i n g  case of 

It should be  noted t h a t ,  s ince  t h e  lowpass output f i l t e rs  
are  LC with free-wheeliEg diodes, i t  i s  advantageous, f r o m  an 
e f f i c i e n c y  viewpoint, t o  limit t h e  OFF t i m e  a s  much a s  possible  
and hence decrease t h e  amount of conduction time of t h a  diode. 

Reviewing t h e  Sin@-ended I n v e r t e r - r e c t i f i e r  i n  t h i s  l igh t ,  
t he re  a re  s sve ra l  l imi ta t ions  t o  t h i s  c i r c u i t .  F i r s t ,  s ince  
the %ettf and "reset" volt-second products must be equal ,  i t  
i s  obvious t h a t ;  a )  i f  the attempt i s  made t o  operate near  100% 
ON time, t he  ftresetE1 voltage must be q u i t e  high and the re fo re  
scb jec t  compor,ents t c  severe usage, b )  transformer losses increase  
r ap id ly  with decreasing "reset" t i m e ,  and c )  s ca l ing  the trans- 
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former s o  a s  t o  s h i f t  the  duty cycle  range means t h a t  the f r ee -  
wheeling diode w i l l  conduct for a l o n g e r  time, hence lowering 
e f f ic iency ,  a d  t h e  output choke must be s ized  t o  supply contin- 
uous current for a longer period. 
systems, which have no l imi t a t ions ,  o f f e r  a d i s t i n c t  
advantage over the single-ended design, and the study will be 
l imi t ed  t o  the push-pull chopper and  the push-pull Inverter-  
re c t  if ie  r . 

Therefore the push-pull 

F. Power Stage Drive Considerations 

In  order t o  switch the  power s tage a s  r a p i d l y  and as  eff i -  
c i e n t l y  a s  possible ,  there are  severa l  dr ive requirements t o  b e  
considered: 

Fixed drive vs. variable.  
t r a n s i s t o r s  are  always driven as  i f  f u l l  load was applied,  
A t  l i g h t  load, t h i s  type of drive i s  wasteful of base 
power, but parer s t age  delay,  rise, and f a l l  times are 
somewhat reduced by overdriving the  t r a n s i s t o r .  The use 
of transformer dr ive with load current  feedback allows 
driving the t r ans i s to r s  proport ional ly  with load, so  t h a t  
t h e  dr ive  i s  always adequate t o  maintain the  t r a n s i s t o r s  
w e l l  i n  sa tura t ion  but never overdriven. 
the use of load current feedback reduces the  dr iver  s t age ' s  
power output t o  o n l y  that  necessary t o  i n i t i a t e  t r igger ing  
of the power s tage and t o  supply transformer mangetizing 
cur ren t  , 

In  a f ixed  dr ive system the  

In  addition, 

Rise and f a l l  times. F o r  f a s t  rise and f a l l  times, the  
amplitude of  t h e  driving waveform should be high a t  the 
turn-on and turn-off edges, and then decrease t o  t he  
minimum riecessary l eve l  thereaf te r .  

l'Ol?Ftf time. During rroffff  time, the t r a n s i s t o r s  should 
be reverse-biased s o  as t o  minimize leakage current  losses, 
I n  a conventional square wave appl icat ion this i s  r ead i ly  
achieved by the  I r i e d i a t e  r eve r sa l  of the  driving wave- 
form. I n  a var iable  pulse width system, however, appreciable 
dwell t im e x i s t s  during which no dr ive  vol tage i s  applied. 
Energy which i s  s tored  during 
by various schemes, t o provide reverse  b i a s  f o r  Some time 
duration, but t h e  45% conduction time (55% dwell time) 
imposes a r a the r  long discharge requirement. 

t i m e  may be u t i l i z e d ,  

Figure 16 shows three  applicable waveshaping schemes. I n  t h e  BASE 
RC scheme, t h e  dr iv ing  pulse  i s  i n i t i a l l y  high because of t h e  cap- 
a c i t o r  coupling. A s  the  capacitor charges, t h e  base vol tage i s  
reduced t o  (Vin-VRi). A t  the end o f  the ON time, Vin drops t o  zero, 
with the  e n t i r e  Vin anpl i tude being coupled through C1, s o  t h a t  Ql's 
V B ~  goes negative by an amount equal t o  the capac i tor ' s  previous 
charge voltage.  The capac i tor  then discharges exponSntia2ly through 
R1, s o  t h a t  Ql's  BE r i s e s  toward zero ,  A t  t h e  end of the dwell 
period, Vin goes negative. Assuming no base-emitter leakage, C1 and 
R 1  merely t r ans fe r  the (-Vin) po ten t i a l  t o  t he  base of Q L  This 
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schme does supply high amplitude turn-& and turn-off edges 
but does not supply reverse  b i a s  during the  majority of t h e  
dwell time. 

In  the  EMITTER RC scheme ( a  diode m a y  be used i n  place of t h e  
r e s i s t o r ) ,  the  r i s i n g  edge is capaci tor  coupled so t h a t  Vm=Jb. 
The capaci tor  then charges t o  t he  CR1 forward voltage, reducing 
81's Vm. 
of amplitude Vin i s  again capacitor coupled, so VBE goes negat ive 
by an amount equal t o  t h e  pr ior  c a p c i t o r  voltage.  The capac i tor  
then discharges through t h e  diode and 8 1 ' s  Vm rises toward zero. 
A t  t he  end of t he  dwell period, Vin goes negative. Now Q2 conducts, 
and C 1  charges again. Thus 
t h i s  scheme supplied a higher negative p o t e n t i a l  and longer reverse  
b i a s  time than the  BASE RC, has  high amplitude turn-on and turn-off 
edges, and uses fewer components. 

A t  t h e  end of the ON t i m e ,  t h e  negative-going pulse  

a ' s  VB, then becoms (-Vin) + (-Vc1). 

I n  the EMITTER RC WITH CLAMP scheme, the  operation i s  e s s e n t i a l l y  
the same a s  t h e  EMITTER RC, except t h a t ,  during dwell t i m e ,  C 1  
discharges through both CR1 and CR2, each of which clamps i t s  
respec t ive  t r a n s i s t o r  reverse base-emit ter  vol tage t o  about one 
vo l t .  The clamp maybe necessary f o r  power t r a n s i s t o r s  such a s  
the 2N32l2, &ich  has a B V ~ E  r a t i n g  of only 2 vo l t s .  

I n  summary, t he  optimum dr iver  s tage appears t o  be transformer- 
coupled, with load  current  feedback. 
c i r c u i t  o f f e r s  the longes t  reverse-bias time with t h e  minimum 
number o f  components, 

The EMITTEX RC waveshaping 

G. Materials Inves t iga t ion  

a. 

b. 

a 

Available Power Semicondue t o r s  

Vendor l i t e r a t u r e  was searched f o r  t r a n s i s t o r s  with fast 
switching times and l o w  sa tu ra t ion  vol tages .  Table 2 
shows representa t ive ,  present ly-avai lable  t r a n s i s t o r s  
within the  applicable power, voltage,  and cur ren t  range. 
It i s  i n t e r e s t i n g  t o  note tha t ,  of t h e  f o u r  germanium 
devices with frequency c a p a b i l i t i e s  f rom 6OOKC t o  1sM=, 
the  switching speeds a r e  not nea r ly  as  high a s  most of 
the devices. 

Table 3 shows the available high-speed power r e c t i f i e r s  
i n  t h e  range of 1 t o  20 amps. 

I n  t h e  lower power range there  a r e  numerous t r a n s i s t o r s  
and diodes ava i lab le  with h i &  frequency capab i l i t i e s .  

Usable Frequency Range of Semiconductors 

I n  order t o  determine the  usable frequency range a s  a 
funct ion of  the semiconductor c h a r a c t e r i s t i c s ,  a model 
was es tab l i shed ,  consis t ing of a s ingle  t r a n s i s t o r  switch- 
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i n g  thru  an i d e a l  choke input f i l t e r  i n t o  a r e s i s t i v e  load  Fiith 
vol tages ,  cur ren ts ,  and duty cycle equivalent  t o  %hose o f  the 
1OW regula tor ,  as follows: 

xc 

10 e 1w 
1ov 10. 'LTi 

b 

7- 
Figure 1 7 .  Switching Model 

I n  these  ca lcu la t ions ,  de lay  and s torage t ires k7;ere not, ccnzidered. 
T rans i s to r  "OFF" l o s s e s  were a lso ignored a s  being only a sma?,l 
percentage of t o t a l  losses.  
of 1, 10, 100, 250, and SOOKC with t he  following t r a n s i s t w s :  

Calculat icns  were made a t  f requencies  

Table 4. a 2 8 8 0  Parameters 

Zond. Time 
-~ 

45.2% 
45.4% 
117.0% 
49.6% 
54.1% 
91.1% 
91.2% 
92.9% 
95.5% 
99 9$ B Freq. 

1 K C  
l O K C  

1GOKC 
2SOKC 
SOOKC 

1 K C  
l O K C  

iOOKC 
252KC 
SOOKC 

1 .  

Detai led curves f o r  t h e  2N2880 were ava i l ab le ,  s o  ty-plcal  values  
were se l ec t ed  f o r  t h e  above parameters. Variat ion o f  & with 
frequency was not ava i lab le ,  s o  it was he ld  constant ,  somewhat, 
a r b i t r a r i l y ,  a t  a l l  frequencies.  
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Table 5. 2N1908X (assumed) Parameters 

Cond. T i m e  tr+ tf IB IC 

45.2% 1 . 8 ~ ~  .112 1.12 

46.0 540 1 1 !iz , i!z 67.6 

91.4 ,113 1.13 
99.5 . n 6  1.16 

90.5 ,112 1.12 

as 
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'CS 'BS Freq. 

.08v X C  1 1 13OKC l O K C  
2 COKC 
lKC 

l O K C  
iOOKC 

Detai led curves were not  avai lable  f o r  t h e  2N1908, -so ( t r + t f ) ,  

o!?'low sa tu ra t ion  vol tage and medium switching speed 3s a cont ras t  
t o  t h e  medium sa tu ra t ion  vol tage  and high speed of t h e  2N2380. 

and '3s were establ ished s o  a s  t o  i l l u s t r a t e  the e f f e c t  1 vcs, 

Tables were prepared, using the formulas below: 

Table 6. 

Zond. Time 

45.2% 
45 9 4% 
47 -0% 
49.6% 
54.1% 
91 . 1% 
91.2% 
92.9% 
95.5% 
99.9% 

2N2880 Dissipat ion Vs. Frequency 

PSW 

.0013: 
0133 
.135 
342 

.708 . 000669 
.00669 

.Ob75 . 170 

.346 

PO; 

.0609 

.CY312 . 0595 

.OS7 1 
,0526 
0122 . 122 . 1 2 1  
e119 . 114 

Oh57 
0459 

.0446 . 0428 

.0394 

.0918 

.0916 

.0909 
,0890 
. a 5 6  - 

pD 

.io8 

.120 
239 

.442 

.800 
2111 

.220 

.279 
Y 378 
.546 
7 

98 -92 
98 83 
97.68 
95 . 83 
92.65 
97.96 
97.87 
97 * 30 
95.37 
94 84 

Freq. 

lKC 
lOKC 

lOOKC 
2 5 0 K C  
SOOKC 

1 K C  
lOKC 

lOOKC 

SOOKC 
259K 

Vm 

20 
20 
20 
20 
20 
10 
10 
10 

10 
7 -  _ -  
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45.2% 
46,0% 
54.1% 
67.6% 
90.5% 
91.4% 
99.5% 

Table 7. 2N1908X Dissipation Vs. Frequency 

.00675 
.068 1 
,724 

00339 
0342 

.351 

2.04 

Cond. Time I Psw I 
.0252 
.0249 
.0217 
,0153 
i 0506 
0506 . Oh73 

99.21 
98.63 
32.75 
82.92 
95 *54 
98 25 
95.46 

u(C 
lOKC 

1 0 0 K C  
250KC 
lKC 

lOKC 
lOOKC 

20 
20 
20 
20 
10 
10 
10 

Transis tor  e f f ic iency  versus frequency i s  p l o t t e d  i n  Figure 18 
f o r  each t r a n s i s t o r  a t  each condition of input voltage and con- 
duction t i m e .  

I n  the very l o w  frequencies, switching time ( t r + t f )  i s  i n s i g n i f i -  
cant,  and the 2N1908X i s  superior because of i t s  lower sa tura t ion  
(VCS) voltage. 
than the  90% condition merely because the CN l o s ses  (Pon + P3ase) 
occur f o r  a smaller portion of the period. 

The condition of 45% duty cycle i s  more e f f i c i e n t  

I n  the  higher  frequencies, where switching t i m e  i s  a s ign i f i can t  
por t ion  of the  period, the  2142880 is  c l e a r l y  superior by v i r t u e  
of  i ts  switching speed. 
lOOKC, because of the assumed switching speed, s ince above tinis 
frequency the  switching time soon becomes g rea t e r  than t h e  ON 
t i m e .  
i s  the mos t  e f f i c i e n t  because the r a t i o  of switching time/ON t i m e  
i s  less than t h a t  f o r  t h e  45% condition, 

The 2N1908X cannot be operated much above 

I n  the higher frequency region, the 90% duty cycle  condition 

Although t h e  curves of Figure 18 a r e  approximate, s ince  r e l a t i v e l y  
f e w  poin ts  a re  p lo t t ed  for each curve, two  poin ts  of i n t e r e s t  can be 
noted. 

F i r s t ,  each curve i s  r e l a t i v e l y  f l a t  cut t o  some frequency, a t  which 
t i m e  t h e  curve begins t o  r o l l  o f f  rapidly.  
judging from the  d i s s ipa t ion  t a b l e s  above, a t  t he  frequency where 
Pswitching becomes equal t o  Pon + PBase. 
Pon + PBase; 

This seems t o  occur, 

Equating Pshcttching t o  
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wk-ich agrees -FPsx:cbly well with the curve 
l abe l led  B2 of F l?ure  I?,. 

Secmaly, -k:e f r e q u x c p  e t  --* * p - i A  i n.7 the curves (31 and B2) cross 
each other m y  be drtcrrninea by eaua t ing  t o t a l  losses f o r  each 
condi t ion and solviriq f w  T; 
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Using the 2 ~ 2 8 8 0  w i t h  subscr ipts  1 and 2 f o r  conditions B1 and B2 
respec t ive ly  ; 

The curves (B1 and B2) of Figure 18 ind ica t e  t h a t  crossover occurs a t  
about 1 6 0 ~ ~  &ich  agrees w e l l  with t h e  above r e s u l t .  

summary 
Trans is tors  with very low sa tura t ion  vol tages  are  more e f f i c i e n t  a t  low 
frequencies.  Most high frequency t r a n s i s t o r s  possess higher s a tu ra t ion  
vol tages ,  but a t  higher frequencies t h e i r  increased switching speeds render 
them more e f f i c i e n t  . 
If "OFF" losses  and delay and storage times a re  neglected,  equations 8 
a n d 9  allow the  p x d i c t i o n  of the e f f ic iency  r o l l - o f f  frequency of any 
t r a n s i s t o r  a s  a func t ion  of known c i r c u i t  requirements and t r a n s i s t o r  
parameters. 
dec l ine  of t r a n s i s t o r  e f f ic iency .  Calculations ind ica t e  t h a t  operation 
a t  any'frequency below ro l l -o f f  will not increase e f f i c i ency  by more than 
1 o r  2%. 

Operation above the r o l l - o f f  frequency will r e s u l t  i n  a rap id  

If "OFF" losses and delay and s t o r a g e  times a re  neglected, equations / O  
and / I  allow the  predict ion of t he  crossover frequency. 
frequency is  a composite ro l l -of f  frequency which s e t s  the upper frequency 
l i m i t  f o r  a t r a n s i s t o r  which must operate over an input  vol tage range with 
duty cycle control .  Operation above crossover frequency r e s u l t s  i n  r a p i d  
decl ine of e f f ic iency  f o r  t h e  high input ,  low duty cycle condition. Oper- 
a t i o n  below crossover w i l l  r e s u l t  i n  an e f f i c i ency  increase ranging f rom 
almost 0 upward t o  about 1 o r  2%, depending upon input  vol tage and duty 
cycle. 

The crossover 

c . Available Magnetic Materials 

One of t he  considerations o f  t h i s  program i s  t o  minimize 
the contr ibut ion of the magnetic components t o  stray 
magnetic f-ields. 
s t r a y  f i e l d s  a re  air-gaps, non-uniform winding d i s t r i -  
butions,  and l o o s e  coupling between windings and core. 

Several f a c t o r s  which cont r ibu te  t o  

32 



I n  surveying the  avai lable  nagne t i c  mater ia ls  , both 
stamped l a n i n a t i m s  and c-cores were eliminated 
im9ediately became they  have bu i l t - i n  air-gaps and 
because t h e i r  windings cannot be uniformly d i s t r ibu ted  
o r  t ightly-coupled t o  t h e  core.  The hermetically-sealed, o i l -  
f i l l e d ,  tape-wound var ie ty  of to ro ids  was considered, but  
these  cores are  available with a minimum tape thickness  o f  
1 m i l ,  which ailows f o r  operation up t o  about lOKCPS, beyond 
which the  core losses  become prohibi t ive.  

The configurations &ich  o f f e r  the m o s t  promise are the 
to ro ida l  and the tape-wound bobbin cores. The t o r o i d s  
o f f e r  high permeability, uniform winding d i s t r ibu t ion ,  
tight coupling , an d inductive tolerances of about 520% 
m a x i m .  Their p r i m  use i s  non-cr i t ica l  inductors  and 
t r a n s f o r m r s  where small s i z e  i s  a requirement. Their 
frequency range is  a funct ion of the  core mater ia l ,  and 
mater ia ls  avai lable  include molybdenum-permalloy, i ron  
powder, and f e r r i t e s .  

The tape-wound bobbin cores cover the  frequency range of 
2 t o  SOOKCPS. Use of s t a i n l e s s  s tee l  r a the r  than ceramic 
bobbins i s  recommended, because t h e i r  smaller wa l l  thick- 
ness gives smaller winding periphery, hence 2mer ove ra l l  
winding res i s tance ,  and better r a t i o  of core cross-sect ional  
area t o  ove ra l l  bobbin cross-sect ional  area,  *thus reducing 
f l u x  leakage somewhat. These cores are ava i lab le  i n  e i t h e r  
Orthonol o r  Permalloy 80 mater ia ls ,  and i n  tape thicknesses  
of 1/8, 1/4, 1 / 2  and 1 m i l .  
l i s h e d  core l o s s  curves, and almost no laboratory-type 
curves are avai lable  f o r  t hese  mater ia ls ,  s o  t h a t  i n  general 
the vendors can only recommend what t o  use f o r  a p a r t i c u l a r  
appl icat ion.  

I n  the  power-frequency range, say up t o  SOOCPS, the  prime 
r e q u i s i t e  f o r  core material  i s  h igh  permeability, and core 
lo s ses  and switching time are secondary considerations.  
I n  the  audio range, from 500 t o  l5KCPS, both hys t e re s i s  
and eddy current losses  become important, and only moderate 
permeabili ty i s  required. In  the  high frequency range, 
from 1 S C P S  upward, e d a  cur ren t  losses predominate, 
switching time becomes important, and permeabili ty can be 
qui te  low. 

A t  t h e  present time no pub- 

Generally speaking, mater ia l s ,  such as Orthonol, which 
have very square hys te res i s  loops have slower switching 
times than those  mater ia ls  which have more rounded loops, 
such a s  4-79 Molybdenum-Permalloy, a t  a given drive l e v e l  
i n  Oersteds. For a spec i f i c  transformer, switching time 
i s  approximately an inverse l i n e a r  funct ion o f  dr ive level, 
so tha t  t he  core should be dr iven in to ,  o r  a s  close a s  
possible t o ,  sa tura t ion  i n  order t o  achieve the  f a s t e s t  
possible switching t b .  
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A t  this time, l i t t l e  spec i f i c  information regarding t h e  magnitude 

CPS 

of losses 7s. freqaency has been asseir&led. -However, t h e  ?allow- 
i n g  t a b l e  shows, f o r  eacn frequency range, t h e  r e l a t i v e  character-  
i s t i c s  of the applicable core  mater ia ls :  

Material  Ll 
Freq., Core  

;s I Loss I Permeabili ty 
I I 

Hys t e re  sis Ed$. C u r .  I 
0 , S-lSX 

15 -4OK 

Moly- Perm. Powder 
Iron Powder 
F e r r i t e  

Moly-Perm. Powder 
I ron Powder 
F e r r i t e  

Low 
Moderate 
H i g h  

H i g h ,  Decreasing 
High, Decreasing 
Low, Constant 

LOW 
LOW 
LOW 

LOW 
Lmr 
Mode r a t  e 

LOW 

Low 
LOW 

High Moderate, Decreasing 
Moderate Moderate, Decreasing 
Low Moderate, Constant 

40-200K 

(Tape-wound bobbin cores not included because 
loss clirves are  not  available.)  

Moly-Perm. Pwdei- 
I r o n  Powder 
F e r r i t e  

H. Power Source and Load Considerations 

Excessive 

Low 
High 

a, Power Source Considerations 

Low 
Low 
High 

Since t h i s  study i s  d i rec ted  toward s a t e l l i t e  power 
s y s t e m ,  and since !post of the present  s a t e l l i t e  power 
systems use eitlner ba+, te r ies ,  solar c e l l s ,  or a combin- 
a t ion  o f  both, i t  seems reascjnable t o  examine such sources. 

A simple system i s  s h o m  i n  Figure 19 a ) .  Depending upon 
l i g h t  condi t ions and power required,  e i t h e r  the b a t t e r y  o r  
the s o l a r  a r ray  may furnish the  load  power a t  any given time. 

Figure 19 b) ind ica t e s  the  possible mode of operat ion of such a 
source. 
t o  t h a t  a t  point  A on the  s o l a r  a r r ay  curve. 
the  operating point moves along t h e  solar a r ray  curve toward B. Poin t  
B represents  the solar a r ray ' s  maximum PO- po in t ,  and t h e  a r r ay  w i l l  
supply the  l o a d  u n t i l  t h e  operating point moves pas t  B. A t  t h i s  t i m e ,  
s ince  the  load  demand exceeds t h e  source capab i l i t y ,  the  operat ing 
point will jump t o  the  b a t t e r y  curve a t  po in t  C y  and continue along 
t h a t  curve u n t i l  .the l o a d  demand is  s a t i s f i e d ,  say a t  D. 
load  w i l l  cause the operating point t o  r e t r ace  a s imi l a r  s o r t  o f  
locus back t o  the s o l a r  a r r ay  curve. 

Suppose the s o l a r  array i s  furn ish ing  load power equiva len t  
If t h e  load i s  increased,  

A decreasing 

Under these conditions,  t h e  regula tor  i s  f a c e d  with very rap id  
changes of input  vol tage f o r ,  perhaps, only minute changes of 
load, and the  probable r e s u l t  will be outpilt t r a n s i e n t s  and/or 
regula tor  i n s t a b i l i t y .  Unfortunately, the regula tor  has  very 
l i t t l e  perogative i n  the matter, and the  only th ing  t o  be done 
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i s  t o  incorporate mer storage i n  the r egu la to r ' s  input  
c i r c u i t r y  i n  an a t t e m p v t o  reduce the input  t r a n s i e n t s  a s  
m c h  as  possible .  

Energy s torage a t  the r egu la to r ' s  input  i s  a l so  des i rab le  
f r o m  the standpoint of maxinun u t i l i z a t i o n  of t he  source. 
I n  a va r i ab le  duty cycle,  switching regula tor  the peak input 
demand may be about twice the average power demand. If no 
s torage i s  u t i l i z e d ,  the  source m u s t  be  s i zed  f o r  t h e  peak 
demand r a t h e r  than the average, r e s u l t i n g  i n  increased source 
s i z e ,  weight, and cos t .  

The study spec i f i ca t ion  includes changes o f  s o w c e  vol tage 
between the minimum and maximum extrems, with 10 mill isecond 
r i se  and f a l l  times. I n  the l imi t ing  case, where a r ise  may 
immediately fol low a f a i l ,  t h i s  wmld correspond t o  a per iod 
of about 20 mlll iseconds,  Since t h e  frequency of operation 
of t hese  r egu la to r s  i s  assimed t o  be a t  l e a s t  SKCPS, t he  10 
rnillisecond v a r i a t i o n  is v i r t u a l l y  s teady  s t a t e  s o  f a r  a s  t he  
input  f i l t e r  i s  conzerned. Therefore, the  a n o u n t  of suppres- 
s ion  o f  the  c y c l i c  input va r i a t ions  w i l l  be pr imar i ly  a 
func t ion  of t h e  regula tor ' s  modulating c i r c u i t r y .  

b , Load Considerat i o m  

So f a r  a s  l o a d  i s  concerned, t he re  a r e  twc items 
of i n t e r e s t :  

F i r s t ,  t h e  spec i f i ca t ion  r equ i r e s  operat ion f r o m  
no load  t o  f u l l  load, 21% voltage regula t ion  f o r  
l i n e ,  load  and environment , a d  very high e f f i c i ency  
from 25% t o  f u l l  l o a a .  

With an LC lowpass  outpat f i l t e r  and no load  whatso- 
ever,  the capaci tor  wj.11 peak-charge, s o  t h a t  21% 
regula t ion  cannot be he ld  unless  a bleeder  i s  used. 
The bleeder  must nr;t degrade e f f l c i ency  xhen 25% o r  
g rea te r  load  i s  applled, hoxever. 

Second, f o r  i npu t  var ia t ions  between m i r , i m u m  and 
m a x i m m i  l e v e l s  with 10 millisecofid r-ise and f a l l  
t i n e s  occurring simultaneously with s t e p  changes 
of load  f r o m  75  t o  l@O% o r  100 t o  75$, the  output 
vol tage must not deviate more than 22% of nominal 
and must recover t o  51% within 50 milliseconds.  

A s  discussed abose, the  suppression o f  t h e  c y c l i c  
input va r i a t ion  w i l l  be a func t ion  o f  t.he response 
of t h e  moduiatlng c i r c u i t r y .  
excursion of output vo l tage  due t o  t he  s t e p  load  
changes, since t h e  change occurs i n  t h e o r e t i c a l l y  
zero t i m e  and the c o n t r o l l e r  cannot be i n f i n i t e l y  
f a s t .  

There will be an 
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I f ,  a s  discussed i n  Section IV E above, t h e  c i r c u i t  
concept uses a constant volt-second f m c t i o n  t o  vary 
pulse  width inversely with input  vol tage,  t h e  follow- 
ing  block diagram may be e s t ab l i shed  f o r  the  push- 
p u l l  chopper : 

I I 

Figure 20. Chopper Block Diagram 

I n  th i s  approach, the power s tage  ON t i m e  i s  equal 
t o  k/ein, s o  t h a t  the  output of t h e  power s tage,  a t  
f i x e d  load, will be a t r a i n  of  pu lses  o f  varying 
width, with amplitude equal t o  the instantaneous 
value ofe in .  The output f i l t e r  i n t e g r a t e s  t h i s  
pulse  t r a i n  t o  i t s  average Dc value.  If t h e  l o a d  
changes, the comparison c i r c u i t  generates  an error  
vol tage,  t h i c h  i n  turn i s  converted t o  a change of 
freouency o f  t he  power s t a g e ' s  switching so  a s  t o  
maintain EDC constant. 

Froma prel iminary viewpoint , i t  appears t h a t  , i f  
the  frequency of operation i s  h igh  compared t o  the 
frequency of  t h e  input va r i a t ions ,  the  power s tage  
and output f i l t e r  w i l l  suppress  t h e  cyclic va r i a t ions .  
The s t a b i l i t y  problem reso lves  pr imar i ly  t o  the 
output f i l t e r ,  the frequency a t  which the load  i s  
switched, and t h e  response of t h e  con t ro l  c i r c u i t .  
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V. CONCLUSIONS AND RE C O I ~ ~ N D A T I O N S  

The type of c i r c u i t r y  selected f o r  f u r t h e r  study i s  t h e  
push-pull chopper and t h e  push-pull i n v e r t e r - r e c t i f i e r .  
The m o s t  promising mode of operation i s  a combination of 
pulse  and frequency modulation. 

C i rcu i t s  which automatically ad jus t  pulse width a s  a 
func t ion  of input voltage promise f a s t  response and 
inherent suppression of input va r i a t ions .  Several  such 
c i r c u i t s  are ava i lab le ,  one of which uses current  feed- 
back drive,  the other  using voltage drive.  
feedback c i r c u i t  appears t o  be simpler and possibly more 
e f f i c i e n t .  

The current 

A reasonably l a rge  se lec t ion  o f  t r a n s i s t o r s  i s  ava i lab le ,  
with frequency capab i l i t i e s  appl icable  t o  t h i s  study. 
s e l ec t ion  of high-speed r e c t i f i e r s  i s  much m o r e  l imi t ed  
but should prove adequate. 
appear t o  be l imi ted  t o  t o r o i d s  using molybdenum-permalloy 
powder, i r o n  powder, o r  f e r r i t e s ,  and tape-wound bobbin cores. 
I n  a pulse-width modulated system w i t h  input  vol tage and duty 
cycle va r i a t ions  equivalent t o  those of the  l c r W  chopper, t h e  
maximum operating frequency appears t o  be about 20 t o  30KCPS,  
based only on semiconductor e f f ic iency  considerations.  

The 

The avai lable  magnetic mater ia l s  
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8 V I .  PROCRAM FOR NEXT INTERVAL 

During the next Quarterly 
t o  

A .  

B. 

C. 

D. 

E. 

the following *areas: 
period, e f f o r t  w i l l  be d i r e c t e d  

Magnetic inves t iga t ion .  Designs will be generated f o r  
a model transformer using var ious combinations of core 
mater ia l ,  flux density,  and frequency. Efficiency, 
s i z e  and weight es t imates  f o r  each combination will be  
compared and a frequency range determined f o r  m a x i m u m  
eff ic iency,  minimum s i ze  and weight. This w i l l  be  
combined with t h e  semiconductor da ta  t o  select  the maxi- 
mum operating freauency f o r  t h e  regula tors .  

S t a b i l i t y  aga ins t  source and load  var ia t ions .  The block 
diagram, Figure 20, w i l l  be examined f o r  t h e  p o s s i b i l i t y  
of p red ic t ing  i t s  closed l o o p  response. 

Overall  c i r c u i t  concept. A d e t a i l e d  c i r c u i t  concept 
w i l l  be generated f o r  one regulator.- 

Preliminary breadboard work. 
s tage,  and output f i l t e r s  w i l l  be breadboarded i n  a 
preliminary manner t o  check out t h e  c i rcui t  concept 
and i n v e s t i  gat  e shor t  c i r c u i t  c h a r a c t e r i s t i c s  . 

Control c i r c u i t s ,  power 

Detai led design. 
will be i n i t i a t e d .  

Detailed design of t h e  eight r egu la to r s  
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VI11 . CONFERENCES 

On Ju ly  5 ,  1964, a conference was h e l d  with Messrs. Yagerhofer 
and P a s c u i t t i  o f  NASA Goddard. 
progress,  philosophy of the study, and a review of t h e  l i t e r -  
a tu re  search. 
reviewed, and weighting f a c t o r s  es tabl ished.  

Discussion concerned program 

The c r i t e r i a  f o r  s e l ec t ion  of c i r c u i t r y  was 

On September 25, 1961r, a second conference w a s  h e l d  with 
Mr. Pascu i t t i .  Program progress was discussed, and a rough 
d r a f t  of the  f i rs t  quarter ly  r e p o r t  was reviewed. It was 
decided t h a t  t h e  o r ig ina l  program plan &ould 'be modified 
somewhat, with the  aim of performing most of t h e  a n a l y t i c a l  
and f e a s i b i l i t y  inves t iga t ions  before any f o r m a l  breadboard 
work was i n i t i a t e d .  

Not applicable' during this report period. 
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